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Abstract This paper focuses on adapted two-derivative Runge-Kutta (TDRK) type
methods for solving the Schrödinger equation. Two new TDRK methods are derived
by nullifying their phase-lags and the first derivatives of the phase-lags. Error analysis
is carried out by means of asymptotic expressions of the local errors. Numerical results
are reported to show the efficiency and robustness of the new methods in comparison
with some RK type methods specially tuned to the integration of the radial time-
independent Schrödinger equation with the Woods–Saxon potential.

Keywords Two-derivative Runge-Kutta methods · Phase fitting · Schrödinger
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1 Introduction

In molecular dynamics, quantum physics and chemistry, no other equation has been
studied more profoundly than the Schrödinger equation [1]–[7]. The radial time-
independent Schrödinger equation has the form

y′′(x) = (
W (x) − E

)
y(x), (1)

Y. Fang
Department of Mathematics and Information Science, Zaozhuang University,
Zaozhuang 277160, People’s Republic of China
e-mail: ylfangmath@gmail.com

X. You (B)
Department of Applied Mathematics, Nanjing Agricultural University,
Nanjing 210095, People’s Republic of China
e-mail: youx@njau.edu.cn

123



J Math Chem (2014) 52:240–254 241

where the real number E is the energy and the function W (x) is the effective potential
satisfying W (x) → 0 as x → ∞. Two boundary conditions are associated with this
equation: one is y(0) = 0 and the other imposed at large x is determined by physical
considerations. The form of this second boundary condition depends crucially on
the sign of the energy E . Compared with multistep methods whose implementation
requires a series of starting values, Runge-Kutta (–Nyström) (RK(N)) type methods
are favorable because the initial values that are available are sufficient for them to run.
Regarding the oscillatory character of the solution to the Schrödinger Eq. (1), there
have appeared a lot of adapted-type integrators, one step or multistep, of , a pronounced
class of which is based on important properties such as exponentially/trigometrically-
fitted or phase optimized (see [1]–[44]). Very recently, Anastassi et al. [32] constructed
optimized Runge-Kutta methods with zero phase-lag and its derivatives, which were
tested to be very effective for the radial Schrödinger equation.

The purpose of this paper is to investigate modified two-derivative Runge-Kutta
(TDRK) methods adapted to the oscillatory character of the solution of the radial
Schrödinger Eq. (1). Section 2 presents the scheme, order conditions and phase prop-
erties for TDRK methods. In Sect. 3, we derive two new optimized modified TDRK
methods by nullifying the phase-lags and their first derivatives. In Sect. 4 we carry
out the error analysis for the new methods and give the asymptotic expressions of the
local errors. Numerical results are reported in Sect. 5 to show the effectiveness and
competence of our new methods. Section 6 is devoted to conclusions.

2 Phase properties of modified TDRK methods

2.1 Modified two-derivative Runge-Kutta methods and order conditions

For the numerical solution of initial value problems of systems of first-order differential
equations

y′(x) = f (x, y), y(x0) = y0, (2)

where y ∈ R
N , f : R × R

N → R
N is a smooth function, Chan et al. [36] proposed

the TDRK methods and obtained the order conditions. Suppose the solution of the
problem (2) is oscillatory and ω is an accurate estimate of the principal frequency
of the solution. We consider the following special form of explicit modified TDRK
method

⎧
⎨

⎩

Y1 = yn,

Yi = yn + ci h f (xn, yn) + h2 ∑i−1
j=1 ai j g(xn + c j h, Y j ), i = 2, . . . , s,

yn+1 = yn + hβ(ν) f (xn, yn) + h2 ∑s
i=1 bi (ν)g(xn + ci h, Yi ),

(3)

where g(x, y) = y′′(x) := ∂ f (x,y)
∂x + ∂ f (x,y)

∂y f (x, y), ci , ai j (1 ≤ j < i ≤ s) are
real constants, β(ν) and bi (ν) (1 ≤ i ≤ s) are real even functions of ν = hω. In
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Kronecker’s product, the scheme (3) has the form

{
Y = e ⊗ yn + hc ⊗ f (xn, yn) + h2(A ⊗ IN )G(Y ),

yn+1 = yn + hβ(ν) f (xn, yn) + h2(b(ν)T ⊗ IN )G(Y ),
(4)

where IN is the N × N identity matrix and

Y = (Y T
1 , . . . , Y T

s )T , G(Y ) = (g(xn, Y1)
T , g(xn + c2h, Y2)

T , . . . ,

g(xn + csh, Ys)
T )T ,

A = (ai j )s×s, ai j = 0, for i < j, c = (0, c2, . . . , cs)
T ,

b(ν) = (b1(ν), . . . , bs(ν))T , e = (1, . . . , 1)T .

The scheme (3) can also be expressed compactly by the Butcher tableau

c A
β(ν) bT (ν)

=

0
c2 a21
...

...
...

...

cs as1 · · · ass−1

β(ν) b1(ν) · · · bs−1(ν) bs(ν)

or simply by (c, A, b(ν)). We assume that as β(ν) → 1 as ω → 0 so that when
ω → 0 the modified RK method (3) reduces to a traditional two-derivative RK method
with constant coefficients (see [36]). The exact solution of the IVP (2) has the series
expansion

y(xn + h) = yn +
∑

t∈T

hr(t)

σ (t)

1

γ (t)
F(t)(yn), (5)

where the set of rooted trees T , order r(t), symmetry σ(t), density γ (t) and the
elementary differential F(t)(yn) are defined in Butcher [37]. On the other hand, the
numerical solution yn+1 given by the scheme (3) has the series expansion

y(xn +h)= yn + h
∞∑

j=0

ν jβ( j)(0)

j ! f (xn, yn) +
∑

t∈T, r(t)≥2

hr(t)

σ (t)
b(ν)T �(t)F(t)(yn),

(6)

where the vector of elementary weights �(t) = (�1(t), . . . , �s(t))T is defined in
[39].

Following the line of You [38], we have the following theorem on order conditions.

Theorem 2.1 The modified TDRK method (3) has order p if and only if

β( j)(0) = 0, for j = 1, . . . , p − 1, (7)
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and

b(ν)T �(t) = 1

γ (t)
+ O(h p−r(t)+1), for all trees with r(t) = 2, . . . , p. (8)

For example, the fourth-order conditions are given by

β( j)(0) = 0 for j = 1, 2, 3,

bT (ν)e = 1

2
+ O(h3), bT (ν)c = 1

6
+ O(h2), bT (ν)c2 = 1

12
+ O(h),

(9)

where c2 = (0, c2
2, . . . , c2

s ).

2.2 Phase properties of modified TDRK methods

For the purpose of phase analysis, we consider the following scalar ideal equation

y′ = iωy, i2 = −1, (10)

where ω > 0 is an estimate of the principal frequency of the problem. Applying the
TDRK method (3)–(10) yields

yn+1 = M(ν)yn, (11)

where M(ν) is called the stability function.

Definition 2.1 (see [29]) For the modified TDRK method (3) with stability function
M(ν), the quantities

P L(ν) = ν − arg(M(ν)), d(ν) = 1 − |M(ν)|

are called phase-lag or dispersion and dissipation or error of amplification factor,
respectively. If

P L(ν) = cφνq+1 + O(νq+3), d(ν) = cdνr+1 + O(νr+3),

the method is said to be of phase-lag order q and dissipation order r, respectively, where
the cφ and cd are called the phase-lag constant and dissipation constant, respectively.
If P L(ν) = 0 and φ(ν) = 0, then the method is called phase-fitted and amplification-
fitted, respectively.

Denoting M(ν) = U (ν) + iV (ν) with U (ν) and V (ν) the real and imaginary parts
of M(ν), we have

U (ν) = 1 − ν2bT (I + ν2 A)−1e, V (ν) = ν
(
1 − ν2bT (I + ν2 A)−1c

)
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and the phase-lag and dissipation become

P L(ν) = ν − arccos
U (ν)

√
U (ν)2 + V (ν)2

, d(ν) = 1 −
√

U (ν)2 + V (ν)2.

In particular, if (3) is an s-stage explicit TDRK method, that is, the coefficient matrix
A is strictly lower-diagonal, then As = 0 and

U (ν) = 1 − ν2bT e + ν4bT Ae − . . . + (−1)sν2s As−1e,
V (ν) = ν1 − ν3bT c + ν5bT Ac − . . . + (−1)sν2s+1 As−1c.

In the next section, we will derive two modified TDRK methods by nullifying their
phase-lags and the first derivatives of the phase-lags.

3 Construction of the new methods

We begin by considering the two-stage TDRK methods given by the following Butcher
tableau of coefficients

0
1
2

1
8

β(ν) b1(ν) b2(ν)

(12)

If we choose {β(ν), b1(ν), b2(ν)} =
{

1,
1

2
,

1

8

}
, a classical fourth-order TDRK

method in [36] is recovered. Our task is to select proper parameters β(ν), b1(ν), b2(ν)

so that the phase-lag property is optimized.

3.1 A TDRK method with zero phase-lag

In order to construct the first optimized method, we require the phase-lag P L(ν) to
be zero and get the following relation

β(ν)ν − b2(ν)ν3

2
−

(
1 − b1(ν)ν2 + b2(ν)ν2 − b2(ν)ν4

8

)
tan(ν) = 0. (13)

On the other hand we pick two of the fourth-order conditions in (9) for s = 2

b1(ν) + b2(ν) = 1

2
+ O(h3), b2(ν)c2 = 1

6
+ O(h2). (14)

Solving the Eqs. (13) and (14) with the higher order terms omitted yields

β(ν) = 4ν3 + tan(24 − 12ν2 + ν4)

24ν
, b1(ν) = 1

6
, b2(ν) = 1

3
. (15)
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For small values of |ν|, β(ν) has the following Taylor series

β(ν) = 1 + ν4

120
+ ν6

840
+ ν8

2268
+ 221ν10

6227020800
+ 349ν12

4864860
+ · · · .

It is easy to verify that the coefficients β(ν), b1(ν) and b2(ν) satisfy the other two
equations in (9). Therefore, the modified TDRK method defined by (12) and (15) has
order four and we denote this method as MTDRKA. From the Taylor series, the local
truncation error of the method is

LT E = h5
(

− 6ω4 f + gxxx + gyyy( f, f, f ) + 3gxxy f + 3gxyy( f, f ) + 3gxyg

+3gyy( f, g) + 18gy gx + 18gy gy f
)
/720 + O(h6),

(16)

where all the functions and derivatives are evaluated at (x, y) = (xn, yn).

3.2 A TDRK method with zero phase-lag and zero derivative of phase-lag

Now we assume that the phase-lag P L(ν) has been zero. We require further the first
derivative D P L(ν) of P L(ν) with respect to ν to be also zero. Then we have the
following equation

β(ν) − 3b2(ν)ν2

2
−

(
1 − ν2

(
b1(ν) + b2(ν) − b2(ν)ν2

8

))
sec(ν)2

−
(

b2(ν)ν3

4
− 2ν

(
b1(ν) + b2(ν) − b2(ν)ν2

8

))
tan(ν) = 0.

(17)

Solving the Eqs. (13) and (17) and a fourth-order condition b1(ν) + b2(ν) = 1

2
, we

obtain the following coefficients

β(ν) = ν(ν2 − 4) + 2(6 − ν2) tan(ν) + ν3 sec2(ν)

ν(8 + ν2 sec(ν)2 + 3ν tan(ν))
,

b2(ν) = 4(ν(ν2 − 2) sec(ν)2 + tan(ν)(ν2 + 2))

ν3(8 + ν2 sec(ν)2 + 3ν tan(ν))
,

b1(ν) = 1

2
− b2(ν).

(18)

For small values of |ν|, β(ν) has the following Taylor series

β(ν) = 1 − ν4

120
+ ν6

560
+ ν8

3780
+ 317ν10

1995840
+ 1411ν12

51891840
+ · · · .
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It is easy to verify that the coefficients β(ν), b1(ν) and b2(ν) satisfy the other two
equations in (9). Therefore, the modified TDRK method defined by (12) and (18) has
order four and we denote this method as MTDRKB. The local truncation error of the
method is given by

LT E = h5
(

6ω4 f + 24ω2(gx + gy f ) + gxxx + gyyy( f, f, f )

+3gxxy f + 3gxyy( f, f ) + 3gxyg + 3gyy( f, g) + 18gy gx

+18gy gy f
)
/720 + O(h6). (19)

4 Error analysis for the new TDRK methods applied to the Schrödinger
equations

In order to use the TDRK method (3) to solve the problem (1), we first rewrite (1) into
a system of first-order ordinary differential equations of the form (2) as follows

{
y′(x) = z(x),

z′(x) = (W (x) − E)y(x).
(20)

And accordingly

{
y′′(x) = (W (x) − E)y(x),

z′′(x) = (W (x) − E)z(x) + W ′(x)y(x).
(21)

Thus the TDRK method (3) applied to (20) yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1 = yn,

Z1 = zn,

Yi = yn + ci hzn + h2 ∑i−1
j=1 ai j

(
W (xn) + c j h − E

)
Y j , i = 2, . . . , s,

Zi = zn + ci h
(
W (xn) − E

)
yn + h2 ∑i−1

j=1 ai j
(
(W (xn + c j h) − E)Z j

+W ′(xn + c j h)Y j
)
, i = 2, . . . , s,

yn+1 = yn + hβ(ν)zn + h2 ∑s
j=1 bi (ν)

(
W (xn + ci h) − E

)
Yi ,

zn+1 = zn + hβ(ν)
(
W (xn) − E

)
yn + h2 ∑s

i=1 bi (ν)
(
(W (xn + ci h) − E)

Zi + W ′(xn + ci h)Yi
)
.

(22)

In Ixaru and Rizea [34] put forward a procedure of finding the asymptotic expres-
sions of errors of exponentially fitted Numerov methods solving Schrödinger equation
for large values of energy. In this section, we follow the approach of Van de Vyver in
[27,28] and adapt this procedure to the new methods derived in Sect. 3. It has been
observed that the numerical performance of the method is crucially influenced by the
fitting frequency ν. As a recipe, we take the following strategy: we divide [0,∞] into
subintervals [xi , xi+1], i = 0, 1, . . ., on each of which the W (x) can be considered
constant, denoted by W̄ . Then on each subinterval [xi , xi+1] the Eq. (1) is approxi-
mated by the second-order linear equation y′′

i = (W̄ − E)yi with constant coefficients,
which has the general solution
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yi (x) = A exp(
√

W̄ − Ex) + B exp(−
√

W̄ − Ex),

where A and B are complex constant. A reasonable choice for the fitting frequency

on each subinterval [xi , xi+1] is ω =
√

E − W̄ . The Eq. (1) can be reformulated as
y′′(x) = (W (x) − W̄ + D)y(x) where D = −ω2. Then the Schrödinger Eq. (1) is
equivalent to the first-order system (2) with

f (x, y, z) =
(

z
(
W (x) − W̄ + D

)
y

)

.

The function g in the modified TDRK method (3) is then

g(x, y, z) =
((

W (x) − W̄ + D
)
y

(
W (x) − W̄ + D

)
z + W ′(x)y

)

.

Substituting the previous formulas of f (x, y, z) and g(x, y, z) into (16) and (19) we
obtain the local truncation errors of the new methods MTDRKA and MTDRKB as
follows:

LT EMT DRK A,y = h5

720

((
24y(x)W ′(x) − 12y′(x)
W

)
D + 24W ′(x)y(x)
W

−5y(x)W ′(x)2 − 6y′(x)
W 2 + 3y′(x)W ′′(x) + y(x)W (3)(x)
)

+ O(h6), (23)

LT EMT DRK B,y = h5

720

(
− 3y(x)W ′(x)D + 9y(x)W ′(x)
W + 3y′(x)

(
2
W 2

+W ′′(x) + y(x)W (3)(x)
)) + O(h6), (24)

where 	W = W (x) − W̄ . From (23) and (24), we can see that, for large values of
|D|,

‖LT EMT DRK A,y‖ ≈ h5

30
‖y(x)W ′(x)D‖,

‖LT EMT DRK B,y‖ ≈ h5

240
‖y(x)W ′(x)D‖. (25)

This explains the higher efficiency of the method MTDRKB compared to the
method MTDRKA.

5 Numerical results

In this section, we test the numerical performance of the new fourth-order modified
TDRK methods in the integration of the radial Schrödinger equation with the Woods–
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Saxon potential. We compare the new methods with some existing highly efficient
methods in the literature. The methods we choose for comparison are as follows:

• RK4V: the optimized fourth-order RK method (CASEII) given by Van de Vyver in
[27].

• MODRKB: the modified fourth-order RK method (CASEII) given by Van de Vyver
in [28].

• EFRK4: the exponentially fitted fourth order RK method presented by Vanden
Berghe et al. in [30].

• RK4S: the exponentially fitted fourth order RK method derived by Simos in [31].
• PHARK4: the phase fitted fourth order RK method presented by Simos and Vigo

Aguiar in [33].
• MTDRKA: the first modified two-derivative RK method with one evaluation of

function f and two evaluations of function g per step derived in Sect. 3.
• MTDRKB: the second modified two-derivative RK method with one evaluation of

function f and two evaluations of function g per step derived in Sect. 3.

We consider the numerical integration of the Schrödinger Eq. (1) with the well-
known Woods–Saxon potential

V (x) = c0z
(
1 − a(1 − z)

)
,

where z =
(

exp
(
a(x − b) + 1

))−1
, c0 = −50, a = 5/3, b = 7. The problem is

solved on the interval [0,15].
This potential was first put forward in the case of exponentially fitted algorithms

by Ixaru and Rizea [34] and it has been widely used to test the quality of a numerical
method solving the Schrödinger equation. In the numerical experiments, we consider
the so-called resonant-state problem E > 0, that is to find the energies (or resonances)

E ∈[0, 1,000] for which the phase shift is equal to
π

2
. The boundary conditions for

this problem are

y(0) = 0 and y(x) = cos(
√

Ex) for large x .

In the case of the Woods–Saxon potential, we follow the lines of [5,34] and choose
the fitting frequency

ω =
{ √

50 + E, x ∈ [0, 6.5],√
E, x ∈ [6.5, 15].

The numerical results Ecalculated are compared with the analytical solution Eanalytical of
the Woods–Saxon potential, rounded to six decimal places. In Figs. 1, 2, 3, 4, we plot
the logarithm of error |Eanalytical − Ecalculated| (LOG(ERR)) versus the computational
effort by the number of function evaluations (FUNCTION EVALUATIONS) required
by each method for Eanalytical = 53.588872, 163.215341, 341.495874, 989.701916,
respectively. In Figs. 5, 6, 7, 8, we plot LOG(ERR) versus the CPU time consumed
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Fig. 1 Efficiency curves for E = 53.588872
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Fig. 2 Efficiency curves for E = 163.215341

by each method for Eanalytical = 53.588872, 163.215341, 341.495874, 989.701916,
respectively. The calculation are carried out on HP Z800 Workstation.

From Figs. 1, 2, 3, 4, 5, 6, 7, 8, it is seen that the new method MTDRKB outperform
the methods PHARK4, EFRK4 and RK4S. Among all the methods we select the
method MTDRKB is the most efficient.
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6 Conclusions

In this paper, explicit two-derivative Runge–Kutta (TDRK) methods adapted to oscil-
latory initial-value problems are considered. Two practical optimized TDRK methods
are constructed with vanished phase-lags and their first derivatives. We have compared
our new methods with some optimized (exponentially fitted or phase-fitted) RK meth-
ods for the numerical solution of the Schrödinger equation. The analysis of the asymp-
totic expressions of the local errors for large energies suggests theoretical advantages
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of the newly constructed TDRK methods. When applied to the radial time-independent
Schrödinger equation with the Woods–Saxon potential, the new methods are shown
to outperform some highly effective codes in the literature, especially in the case of
higher resonance. The special structure involving the second-order derivative and the
optimized phase property are responsible to the excellent behavior of the new methods.

Finally, we note that, as in most integrators adapted to oscillatory problems, the
coefficients of our new optimized TDRK methods depend on a fitting frequency ω, an
estimate of the true frequency of the problem. In applications, the principal frequency

123



252 J Math Chem (2014) 52:240–254

0 20 40 60 80 100
−6

−5

−4

−3

−2

−1

0

CPU TIME (SECONDS)

LO
G

10
(E

R
R

)

WOODS−SAXON POTENTIAL WITH E = 341.495874

MTDRKB
MTDRKA
RK4V
MODRKB
EFRK4
PHARK4
RK4S

Fig. 7 Efficiency curves for E = 341.495874

0 50 100 150 200 250 300 350
−5

−4

−3

−2

−1

0

1

CPU TIME (SECONDS)

LO
G

10
(E

R
R

)

WOODS−SAXON POTENTIAL WITH E = 989.701916

MTDRKB
MTDRKA
RK4V
MODRKB
EFRK4
PHARK4
RK4S

Fig. 8 Efficiency curves for E = 989.701916

is usually unknown, but we assume that a precise estimate ω has been obtained in
advance. For techniques of estimating the principal frequency, we refer the reader to
[15,45–47].
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